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Abstract. With the aim of describing the cooling of highly excited fullerene molecules by heat radiation, we
consider simple classical, dielectric models for calculation of the electromagnetic response and show that
the overall distribution of oscillator strength for electronic transitions can be represented fairly well by
such a model. The connection to a layer model for graphite is discussed. For thermal emission of radiation
from fullerenes, which depends on the oscillator strength at low frequencies only, the classical dielectric
model leads to a prediction which should be applicable at high temperatures where the fine structure
of the oscillator strength distribution is smeared out. We also estimate the emission from infrared-active
vibrations, which dominate at low temperatures but play a minor role at the high temperatures where
formation and decay of fullerene molecules take place.

PACS. 36.40.Vz Optical properties of clusters – 41.20.-q Applied classical electromagnetism

1 Introduction

This study has been motivated by a desire to understand
and describe the radiative cooling of hot fullerenes, which
we have investigated experimentally by measurements of
delayed electron emission (“thermionic emission”) from
fullerene anions in a storage ring [1, 2]. Radiative cooling
can be important for the fundamental processes in clus-
ter dynamics, the formation and fragmentation at high
temperatures.

For fullerenes, there is an energy gap of typically
1–2 eV for electronic excitation, and at low tempera-
ture the heat radiation is therefore emitted mainly by
infrared-active vibrations, but above T ∼ 1000 K elec-
trons dominate due to their small mass. Emission is re-
lated via detailed balance to absorption, which for elec-
tronic transitions has been determined by a variety of
methods [3, 4], including measurement of absorption in
the gas phase [5–8] and in liquid solution [9–12], photoion-
isation [13], and ellipsometry and electron energy loss in
solid films [14–20]. The results have recently been applied
directly to calculate radiative cooling rates [21] but the
scope of this procedure is limited. Detailed information
only exists for a few fullerenes and all experiments on ab-
sorption have been carried out at fairly low temperatures.
In fact, even in the gas phase C60 molecules are not stable
in a container above about 1100 K, probably due to inter-
actions at the container walls [6]. At high temperatures,
the lines corresponding to allowed transitions are broad-
ened and vibronic couplings responsible for the strength
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of forbidden transitions [10] are enhanced, leading to a
general smearing of the structure in the spectrum.

An alternative approach is to represent the coupling of
the radiation field to the electrons in a fullerene molecule
by a simple model, which reproduces the overall distribu-
tion of the oscillator strength but not the detailed struc-
ture. Such a model may, with a simple scaling of the
parameters, be sufficiently accurate for an estimation of
the thermal radiation at high temperatures from all the
fullerenes, like the Thomas-Fermi model of the atom is
useful in the description of the energy loss of charged par-
ticles in all the different elements. There seemed to be
good reasons to expect such a description to be useful
since our measurements of cooling had shown that the in-
tensity of the emitted heat radiation is very similar for a
series of fullerene anions with an even number of carbon
atoms ranging from 46 to 76 [2].

The dominant influence of electron screening on the
electromagnetic absorption by C60 in the visible and ul-
traviolet regions was revealed in early calculations [22,23]
and a giant dipole resonance at about 20 eV, containing
most of the oscillator strength of the 240 valence elec-
trons, was predicted and observed in experiments [15,16].
This suggested that a simple model of C60 as a sphere
or a spherical shell containing a gas of electrons might be
useful [24], and the positions of both the giant dipole reso-
nance and a lower absorption maximum around 6 eV could
be predicted from such models, the lower peak being at-
tributed to a plasma resonance of the most weakly bound
π electrons [25, 26]. The binding of carbon atoms in the
fullerenes is very similar to that in graphite, and for this
material clear evidence for π and σ resonances has been
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obtained [27]. Many features of the absorption in C60 can
in fact be understood by a direct transfer of the atomic
polarisability from graphite [28]. In analogy to graphite,
we shall refer to the giant dipole resonance in fullerenes
as the σ resonance although it also contains much of the
oscillator strength of the π electrons.

An illuminating general discussion of plasma oscilla-
tions of bound electrons in a solid has been given by
Fano [29]. He showed that for a limited frequency interval
with a high density of strength in local oscillators, the long
range dipole interaction between electrons leads to emer-
gence of a coherent longitudinal excitation with higher
frequency, a plasmon. The appearance of a π plasmon in
graphite can be understood within this picture. However,
we interpret the plasma resonance not as an additional
narrow line, separate from single particle excitations [16],
but as a resonance structure in the oscillator strength dis-
tribution. It may be split into many single particle exci-
tations and then gives the envelope of the distribution.
A similar picture has been useful in nuclear physics as
a description of the giant dipole resonance corresponding
to a coherent relative oscillation of the protons and neu-
trons in a nucleus. A discussion of the analogy between
metal clusters and nuclei is given in reference [30] and ref-
erences therein. For both nuclei and metal clusters, the
giant dipole resonance dominates the distribution in os-
cillator strength for electromagnetic dipole excitation. In
our discussion of the fullerene model, we emphasize the
importance of confinement of electrons within a molecule.
It implies that plasma oscillations are important not only
for longitudinal excitations in a solid but also for absorp-
tion of radiation, in the solid or in isolated molecules. The
close analogy to surface plasmons has been discussed by
Lucas et al. [31], and in an appendix we show that the
layer structure of graphite leads to a similar strong influ-
ence of plasma oscillations on the dielectric function for a
field direction perpendicular to the layers.

We shall develop a quantitative dielectric model by ad-
justing the parameters to give a fair account of measure-
ments. We are primarily interested in the polarisability of
isolated molecules but the most comprehensive measure-
ments have been made for fullerenes in solid films, and
our main reference will be the experiments on inelastic
electron scattering in fullerene films by Sohmen et al. [17]
and by Kuzuo et al. [20], from which both the imaginary
and the real part of the frequency dependent polarisability
can be derived via the Clausius-Mossotti relation between
the dielectric function of a cubic crystal and the molecular
polarisability. This relation is equivalent to the Lorentz-
Lorenz formula for the enhancement of the local electric
field over the average field in the crystal. The local field
enhancement is important in general for the polarisation
of molecules embedded in a matrix and, surprisingly, there
is no consensus in the literature on the magnitude of the
related corrections to be applied in the analysis of mea-
surements. We discuss local field corrections in a separate
paper, with special reference to a comparison of data ob-
tained for fullerenes in the gas phase, in solution, and in
solid films [32].

Finally, we discuss the emission of thermal radiation
from fullerene molecules. The intensity is related via de-
tailed balance to the absorption cross-section, and we
show that the dielectric model gives a prediction for the
intensity and its dependence on temperature, which is in
reasonable accord with measurements. The main uncer-
tainty in the calculation is connected to the energy gap
but both theory and experiments indicate that the influ-
ence of the gap decreases at high temperatures. The emis-
sion from infrared-active vibrations is also discussed. We
show that after correction of some simple errors in the lit-
erature, there is reasonable agreement between different
calculations and between theory and experiment for the
absorption by infrared-active vibrations in C60. At high
temperatures, electronic transitions dominate the thermal
radiation but coupled vibronic and electronic transitions
can give an important contribution.

We have tried to make the presentation self-contained,
with a brief derivation of the most important formulas.
The more lengthy calculations have been collected in ap-
pendices. In Appendix A we derive formulas needed for the
spherical dielectric models of fullerenes and in Appendix B
sum rules for the dielectric functions. Appendix C con-
tains a discussion of the dielectric properties of graphite
and their application in models of fullerenes.

2 Classical dielectric models of fullerenes

Earlier developments of dielectric models of fullerenes
have contributed much insight but have not yielded quan-
titative predictions of the oscillator strength in the fre-
quency range dominating the thermal radiation. The
group in Gothenburg has focussed on predictions of peak
positions in the spectrum, corresponding to π and σ
plasma resonances [26]. Their separate treatment of π elec-
trons might seem appropriate for calculation of the oscil-
lator strength at low energies but, as we shall show, one
must also include the high energy σ resonance in the model
to obtain the correct low-energy properties.

The Namur group has also studied dielectric models of
fullerenes but their work has been aimed mainly at the
prediction of absorption bands for multi-shell fullerene
onions, with possible astrophysical relevance [33]. They
have in particular discussed models based on transfer of
polarisation properties from graphite, either in a discrete-
dipole model or in a dielectric description, and an im-
portant result is the demonstration of the influence of
anisotropy of the dielectric function on the absorption
spectrum of C60 [31]. However, when applied to single-
shell fullerenes, their dielectric model has a serious defi-
ciency: the thickness of the carbon shell in fullerenes is
only about half the layer spacing in graphite, and appli-
cation of the bulk dielectric function in graphite as the
internal dielectric function in a fullerene shell therefore
leads to an underestimate of the total number of electrons
in the molecule. In connection with the introduction of
dielectric models, we consider it essential that the restric-
tions on the excitation spectrum imposed by sum rules
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be respected. We discuss in Appendix C a possible modifi-
cation of the procedure for transferring data from graphite
to fullerenes, taking the layered structure of graphite into
account through an inhomogeneous dielectric function.
However, the present large uncertainties in the measured
dielectric properties of graphite make any such procedure
poorly suited for development of a quantitative fullerene
model.

We shall instead adapt our model to the experimental
data for the fullerenes. We aim at a description with as
few parameters as possible and therefore first discuss the
simplest model, a sphere containing a gas of free electrons,
and then step by step introduce the refinements necessary
to give a reasonable representation of measurements. As
our standard example of a fullerene molecule we take the
best known one, C60 [3]. The carbon nuclei form the fa-
mous, highly symmetric buckminster fullerene structure,
a cage with diameter ' 7 Å, and the molecule contains a
total of 240 valence electrons, with 180 in σ bonds and 60
in π orbitals. The electronic levels are highly degenerate
and the upper three levels, which are responsible for the
strong absorption lines below ∼ 7 eV, contain a total of
28 electrons.

2.1 Absorption cross-section

Our final aim is to describe the emission of electromag-
netic radiation from hot fullerene molecules. The dis-
cussion will be based on detailed balance and we first
derive an expression for the cross-section σ(ω) for ab-
sorption of photons with cyclic frequency ω. Within a
classical treatment, this cross-section equals the ratio be-
tween the time averages of the rate of energy absorption
by the molecule and the incident flux of energy. The re-
duced wavelength c/ω of the radiation is assumed to be
long compared to the extension of the molecule, and as
shown in Appendix A, we may then neglect the spatial
variation of the field and determine a molecular polaris-
ability α(ω) from the equations of electrostatics. An exter-
nal field, E = E0exp(−iωt), induces a dipole moment p(t)
in the molecule, p(t) = α(ω)E0exp(−iωt), and the rate of
energy absorption is given by W (t) = ReE · Re(dp/dt).
The time average of this quantity becomes

〈W 〉 =
1
2

Re
(
E∗0 (−iωαE0)

)
=

1
2
ω |E0|2 Imα, (1)

where the asterisk indicates complex conjugation. The in-
cident flux of energy is determined by the Poynting vector,
S = (c/4π)ReE × ReB in Gaussian units, and using the
Maxwell equation ∇×E = −(1/c)∂B/∂t on a plane wave
with electric field E = E0exp {iω(z/c− t)} we obtain

〈S〉 =
c

8π
|E0|2 . (2)

The cross-section 〈W 〉/〈S〉 is then given by

σ(ω) = 4π(ω/c)Imα. (3)

We may derive an expression for the effective molecular
absorption cross-section σm in a non-magnetic medium
in close analogy. The response of a homogeneous, infinite
medium may be described by a dielectric function ε(ω,q)
depending on the frequency ω and the wave vector q of
the field, and the polarisation P is related to the electric
field through the equation

ε(ω,q)E(ω,q) = E(ω,q) + 4πP(ω,q). (4)

For energies in the eV region, the momentum of absorbed
photons may be neglected and the medium may be char-
acterized by a dielectric function ε(ω) depending on fre-
quency only. For a density N of molecules, the product
Nσm is given by the ratio of the time average of the rate
w of energy absorption per unit volume and the time aver-
aged energy flux. According to the wave equation derived
from Maxwell’s equations, a plane wave may be written
as the real part of

E = E0exp
(

iω((n+ ik)z/c− t)
)
, (5)

with (n+ ik)2 = ε, and with this expression we obtain for
the energy flux at z = 0,

〈S〉 =
c

8π
Re
(
E∗0 (n+ ik)E0

)
=

c

8π
n |E0|2 . (6)

For the absorption rate we have

〈w〉 =
1
2

Re
(
E∗0 (−iω)

ε− 1
4π

E0

)
=

ω

8π
|E0|2 Imε, (7)

and this leads to the formula

Nσm =
ω

c

1
n

Imε. (8)

This result agrees with the energy absorption coefficient
2ωk/c for the wave given in equation (5).

Our model calculations will be tested mainly against
measurements of energy loss for electrons penetrating thin
fullerite films. The rate of energy absorption by the foil is
given by

W (t) =
∫

d3r E(r, t) · dP(r, t)
dt

, (9)

where E and P are now real functions of space and time.
A projectile of charge −e and velocity v corresponds to a
charge density with Fourier transform ρ0(q, ω) = −eδ(ω−
q·v)/2π, and in a non-relativistic description the resulting
screened Coulomb field is given by

E(q, ω) = −iq
4π

q2ε(q, ω)
ρ0(q, ω). (10)

Inserting the Fourier expansions of E(r, t) and P(r, t) into
equation (9) and using the relation ε(−q,−ω) = ε∗(q, ω),
which follows from the fact that equation (4) relates the
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Fourier transforms of real functions, we obtain for the rate
of energy absorption during penetration of the foil [34],

W =
e2

π2v

∫
d2q⊥
q2
‖ + q2

⊥

∫ ∞
0

dω ωIm
(
−1

ε(q, ω)

) ∣∣∣∣
q‖=ω/v

,

(11)

where q‖ and q⊥ denote the components of q parallel and
perpendicular to v. For thin foils single scattering domi-
nates and, according to equation (11), one obtains from
the energy loss spectrum of a fast electron at small scat-
tering angles (q ∼ 0) the function ωIm(−1/ε(ω)). The
real part of ε−1(ω) can be evaluated through a Kramers-
Kronig analysis when the imaginary part is determined
over a sufficiently broad frequency range [34].

The bridge from measurements on a solid to the di-
electric properties of an isolated molecule is the Clausius-
Mossotti relation between the molecular polarisability and
the dielectric function,

α =
(

4πN
3

)−1
ε− 1
ε+ 2

= r3
w

ε− 1
ε+ 2

, (12)

where we have introduced the Wigner-Seitz radius rw for
the solid. This relation corresponds to a local electric field
on a molecule, given by the Lorentz-Lorenz formula

Eloc =
ε+ 2

3
E, (13)

where E is the average field in the medium. It is well
known that these equations apply to a cubic lattice of
point dipoles and, as discussed in reference [32], the rela-
tions are expected also to be fulfilled quite accurately for
fullerene molecules crystallized into the FCC lattice of a
fullerite film, despite the fact that the molecules are far
from being point dipoles.

2.2 Sphere with free electrons

In the simplest model, a C60 molecule is represented by
a sphere of radius r1 containing a homogeneous medium
with dielectric function ε(ω) and, as shown in Appendix A,
one then finds for the complex polarisability α,

α = r3
1

ε− 1
ε+ 2

· (14)

If the electrons are represented by a gas of free electrons,
the dielectric function takes the form

ε(ω) = 1− ω2
0

ω(ω + iγ)
, (15)

where γ is a damping constant and ω0 is the plasma fre-
quency, given in terms of the number of electrons ne, the
electron charge −e and mass m, and the volume V by
ω0 = (4πnee

2/V m)1/2. In the limit ω → 0, the dielectric
function diverges and the static polarisability is there-
fore equal to r3

1. With the value r1 = 4.4 Å we obtain

α = 85 Å3 which is close to calculated and measured val-
ues [35]. This “electronic” radius is 0.9 Å larger than the
radius of the cage formed by the carbon nuclei, which ap-
pears reasonable.

For the sphere, the absorption cross-section given by
equation (3) becomes

σ(ω) = πr2
112(ω/c)r1

Imε
(Imε)2 + (2 + Reε)2

, (16)

and with the dielectric function in equation (15) we obtain

Imε
(Imε)2 + (2 + Reε)2

=
1
9

ω2
0γω

(ω2 − ω2
0/3)2 + γ2ω2

· (17)

As discussed in Appendix A, the surface charges induced
by the electric field lead to a harmonic restoring force with
angular frequency ω0/

√
3. The absorption cross-section

given by equations (16, 17) exhibits a resonance with a
maximum at this frequency for all values of γ. The width
is determined by γ and the maximum value is proportional
to ω2

0/γ. In an infinite, homogeneous dielectric, charge
density oscillations cannot be excited by the transverse
field from an electromagnetic wave but only by a longi-
tudinal field from a charged projectile. In contrast, in a
dielectric of extension small compared to the wavelength,
plasma oscillations can be induced also by electromagnetic
radiation.

The response functions describing light absorption and
electron energy loss in solids exhibit resonances at other
frequencies. To illustrate this point, we combine equa-
tions (12, 14) to obtain an expression for the dielectric
function ε(ω) of the solid in terms of the dielectric func-
tion ε(ω) for the medium inside the spheres. For solid C60

we have N = 1.42 × 10−3 Å−3 and for r1 = 4.4 Å the
ratio r3

1/r
3
w is very close to 1/2 which is the value applied

below. For simplicity, we do not, at this point, include the
frequency dependent index of refraction in equation (8),
and we then obtain the two response functions,

ωImε =
18ωImε

(Imε)2 + (5 + Reε)2
(18)

for light absorption, and

ωIm
(
−1
ε

)
=

18ωImε
(4Imε)2 + (4Reε+ 2)2

(19)

for energy loss. The different denominators in equa-
tions (16, 18, 19) lead to different resonance frequencies.
If the damping constant γ in the dielectric function in
equation (15) is small, the three functions attain their
maximum when the term in the denominator involving
the real part of ε is zero. This implies that the resonance
frequency for photo absorption in the solid is shifted by
a factor 1/

√
2 and the resonance frequency for electron

energy loss by a factor
√

2, relative to the value, ω0/
√

3,
for photo absorption in an isolated molecule. More accu-
rately, the shift factors are given by (1 − r3

1/r
3
w)1/2 and

(1 + 2r3
1/r

3
w)1/2, and as it turns out, the three functions



J.U. Andersen and E. Bonderup: Classical dielectric models of fullerenes and estimation of heat radiation 417

attain their maxima at these frequencies also for finite
values of γ.

It is our aim to represent the full absorption spectrum
of the fullerenes by a dielectric model and a useful con-
straint is therefore given by the sum rule for the oscillator
strength distribution f(ω), connected to the absorption
cross-section σ(ω) by

f(ω) =
mc

2π2e2
σ(ω). (20)

It is shown in Appendix B that also within the model this
function fulfils the Thomas-Reiche-Kuhn sum rule,∫ ∞

0

f(ω)dω = ne. (21)

The proof does not depend on the detailed form of the
dielectric function ε(ω), only on its asymptotic behaviour
for ω →∞.

2.3 Spherical shell models

Formulas for the polarisability for more complex shapes
than the sphere have been given by Bohren and Huffman
[36]. For C60 the most natural choice is a spherical shell, as
introduced by Lambin et al. [25] and by Östling et al. [26],
and a derivation of the polarisability for this case is also
given in Appendix A. For a sphere with dielectric function
ε1, covered by a spherical shell with dielectric function ε2,
one obtains

α = r3
2

(ε2 − 1)(ε1 + 2ε2) + ξ(ε1 − ε2)(2ε2 + 1)
(ε2 + 2)(ε1 + 2ε2) + 2ξ(ε1 − ε2)(ε2 − 1)

, (22)

with ξ = r3
1/r

3
2, r1 and r2 being the inner and outer radii

of the shell. Also with this expression for α, the sum rule in
equation (21) is fulfilled with ne equal to the total number
of electrons (Appendix B). For the special case ε1 = 1, the
formula in equation (22) reduces to (ε2 → ε)

α = r3
2

(1− ξ)(ε− 1)(2ε+ 1)
(ε+ 2)(2ε+ 1)− 2ξ(ε− 1)2

· (23)

With the parameters of reference [26], r1 = 2.9 Å and
r2 = 4.3 Å, the static polarisability is again reproduced
approximately with the dielectric function given by equa-
tion (15) since α → r3

2 for ω → 0. There are now two
resonance frequencies, ω− and ω+, corresponding to the
zeros of the denominator in equation (23), and with equa-
tion (15) in the limit γ → 0 they are given by

ω± = ω0

[
1
2
± 1

6

√
1 + 8ξ

]1/2

. (24)

This formula and an expression for the relative oscilla-
tor strength of the two resonances were given already by
Lambin et al. [25] and by Östling et al. [26], who applied
a different method for solving the Maxwell equations in

the quasistatic approximation. Ding’s formula for the res-
onance frequencies [37] is equivalent to equation (24) but
has a somewhat different appearance, and the equivalence
was not realized by Ding who in Table 1 of reference [37]
gave slightly different values for the resonance frequencies
obtained from the two formulas with the same parameters.

While a spherical shell is the most natural represen-
tation of a fullerene molecule, there is, in contrast to the
claim by Östling et al. [26], little indication of the cor-
responding splitting of the high-frequency resonance in
the data shown below in Figures 1–6. As discussed in de-
tail in reference [31] and illustrated also in Figure 11 in
Appendix C, this may be interpreted as a consequence
of a highly anisotropic polarisability of the curved carbon
sheet forming the molecule, analogous to the anisotropy of
the benzene molecule [38] and of graphite [39]. The high-
frequency resonance at ω+ involves oscillation of charge
perpendicular to the sheet, whereas the resonance at ω−
involves charge transport parallel to the sheet, from one
pole of the sphere to the other. We shall therefore in our
model omit the central hole. This is the simplest way to
avoid the splitting and only a small reduction of the outer
radius (∼ 0.2 Å) is needed to compensate for the addi-
tional volume.

2.4 Dielectric functions

Östling et al. pointed out that the spherical shell model
with ne = 20 in equation (15) reproduces the low-energy
peak near 6 eV, obtained from measurements of elec-
tron energy loss in a solid C60 film. The plasmon en-
ergy is ~ω0 = 10.9 eV and the lower resonance energy
in equation (24) becomes ~ω− = 4.8 eV. This resonance
is according to the Clausius-Mossotti relation shifted to
the observed position just above 6 eV for the response
function ωIm(−1/ε). Observed peaks at higher frequen-
cies in this response function were on the basis of a sepa-
rate calculation interpreted by Östling et al. as resulting
from collective excitation of more strongly bound elec-
trons, represented by a Lorentz-type dielectric function
for a collection of classical harmonic oscillators with bind-
ing frequency ωb,

ε(ω) = 1− ω2
0

ω2 − ω2
b + iωγ

· (25)

The replacement of equation (15) by equation (25) just
leads to a shift of the square of the resonance frequencies
by ω2

b. A plasma frequency ω0 corresponding to 100–130
active electrons and a binding energy of ~ωb = 14 eV were
suggested.

There is a serious problem, however, as noted by
Ding [37]: the shift of the low-energy resonance predicted
by the Clausius-Mossotti relation is substantially larger
than that found from a comparison with photo absorption
in the gas phase [5]. Ding suggested that this might result
from a failure of the Clausius-Mossotti relation for C60

films, and this was one motivation for us to consider the
arguments for this relation carefully [32]. We have found
no reason to question its applicability and propose instead
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another explanation: as discussed above, the resonance po-
sitions in equations (16, 18, 19) are determined mainly
by the ω dependence of the real part of ε. Therefore the
weakly bound π electrons and the more strongly bound π
and σ electrons cannot be treated independently but must
be included together in a single dielectric function [25],

ε(ω) = 1− ω2
01

ω2 − ω2
b1 + iωγ1

− ω2
02

ω2 − ω2
b2 + iωγ2

· (26)

Here, the plasma frequencies ω01 and ω02 correspond to
the number of electrons in the two groups and ωb1 and ωb2

are binding frequencies. Even when the resonances in the
imaginary parts of the last two terms in equation (26) are
well separated, the real part of the last term, correspond-
ing to the higher and stronger resonance, may influence
the position of the lower resonance, and, as we shall see,
this removes the problem of the shift.

The presence of the last term in equation (26) has an-
other consequence: the screening due to polarisation of the
more strongly bound electrons pushes oscillator strength
up into the upper resonance, and, as seen in Figure 1,
this may lead to a virtual disappearance of the π reso-
nance! To reproduce the observed, fairly strong excitation
of the π resonance, we reduce the screening of external
fields for π electrons by adding an outer shell containing
a few of these. This may be justified by the observation
(Fig. 4 of [4], [40]) that the wave functions representing the
weakly bound π electrons have tails sticking out from the
region of high electron density. A similar model has been
introduced to describe the optical response of clusters
of the noble metals, for which the plasma resonance as-
sociated with polarisation of the itinerant s electrons is
influenced by screening due to polarisation of the more
tightly bound d electrons [41, 42]. As discussed in Ap-
pendix C, it is also necessary to include such a spill-out of
π electrons to reproduce measurements for graphite with
a layer model.

2.5 Final model

Thus we have modelled the dielectric response of the C60

molecule with the formula in equation (22), with ε1 and
ε2 given by equations (26, 25) and applying the Clausius-
Mossotti relation in equation (12) we have optimized the
parameters to fit the data on energy loss in thin films. The
radii were chosen as r1 = 4.1 Å and r2 = 4.65 Å. Out of
the 28 π electrons in the upper three levels, 3 have been
allocated to the outer shell while the inner sphere contains
the remaining 25 weakly bound as well as the 212 more
strongly bound electrons. The position of the σ resonance
is determined by the total number of electrons and by the
volume of the sphere, whereas the position and strength
of the π resonance is determined mainly by the electron
density in the outer shell.

The binding frequencies were chosen as ~ωb = ~ωb1 =
2.5 eV for the 28 weakly bound electrons and ~ωb2 = 6 eV
for the remaining ones. The separation into two groups of
transitions is supported by calculations of single-electron

transitions without inclusion of the long-range interaction
responsible for the plasma behaviour [22, 23]. The lowest
group of strong transitions is around 3 eV, not far from
~ωb1. The higher transitions are above ∼10 eV, i.e., at
energies somewhat higher than our parameter ~ωb2. How-
ever, with a significantly larger value of this parameter,
the oscillator strength predicted by our model falls off too
rapidly on the low-energy side of the σ resonance. The
last term in equation (26) approaches (ω02/ωb2)2 at low
frequencies and the value of this ratio is therefore deci-
sive for the screening of the π resonance. In Figure 5 of
reference [31] is shown the absorption cross-section for a
single spherical shell containing all the electrons and these
are represented by the dielectric function in equation (26)
but with a much smaller value of (ω02/ωb2)2. The strong
suppression of the π resonance is then avoided but the
σ resonance is not reproduced quantitatively, the absorp-
tion on the low-energy side being much too weak.

The damping parameters give the widths of the res-
onances. An important contribution comes from Landau
damping, the coupling of collective oscillation into single-
particle excitation, and the simple estimate γ = vF/r,
where r is the cluster radius and vF the Fermi velocity,
seems to reproduce measurements for metal clusters quite
well (Fig. 29 of [43]). The magnitude of the damping for
the π resonance, ~γ1 = 2 eV, has been estimated with this
formula for 28 electrons in a sphere with radius r2, and the
value has been used in the expressions for both ε1 and ε2.
As for metal clusters, the agreement with this formula is
probably somewhat fortuitous; for the more tightly bound
electrons, we must choose a width, ~γ2 = 15 eV, almost
four times larger than given by the formula, to reproduce
the maximum of the σ resonance which scales as γ−1

2 . As
discussed in reference [40], the width may be dominated
by a contribution from the variation of the electron den-
sity.

As is seen in Figure 1, the model reproduces the ex-
perimental results for solid C60 rather well. For the π res-
onance, the model is supposed to reproduce the envelope
of the strong lines below 7 eV. The parameters for C70

and C76, used in Figures 2 and 3, have been obtained
by a simple scaling. The electron numbers were scaled
by the number N of carbon atoms, whereas the widths
and binding energies were kept fixed. To keep the areal
density of atoms constant, the nuclear radius (3.5 Å for
C60) was scaled with N1/2, and 0.6 Å and 1.15 Å were
added to obtain the radii r1 and r2. The radii and the
number of electrons in the outer shell have been chosen
as a compromise to reproduce the measurements for all
three cases reasonably well. For C70 the splitting of the
π resonance into single-electron transitions is not nearly
as strong because the symmetry of the molecule is lower
and hence the bunching of electrons into degenerate levels
less pronounced. The agreement with the model is best
for C76, the molecule with the lowest symmetry. Very lit-
tle structure from single particle excitations is visible and
the shapes of the resonances agree well with the model.
Comparing Im(−1/ε) with Imε in Figures 1–3, we see that
the relative positions of the σ resonance are in reasonable
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Fig. 1. Comparison of the response functions for C60 films, de-
termined from electron energy loss (dotted lines) [17], with pre-
dictions from a dielectric model including all 240 valence elec-
trons, with the parameters discussed in the text (solid lines).
The dashed lines indicate the results obtained when all elec-
trons are confined within the inner sphere.

agreement with the prediction of a factor ∼2 from the
simplest model, whereas the shift of the π resonance is
smaller.

The functions determining the response of a condensed
medium fulfil sum rules analogous to the one for the molec-
ular oscillator strength, and the relation between the var-
ious sum rules is discussed in Appendix B. In a homoge-
neous solid with a dielectric function ε(ω) of the form in
equation (26), the photo absorption exhibits resonances
at the binding frequencies, where the function ωImε(ω)
has poles, and the oscillator strengths of the resonances
are proportional to the respective electron densities. How-
ever, such separate sum rules are not valid for an inho-
mogeneous solid, where the bunching of electrons leads to
shifts of the resonance frequencies and changes in the asso-
ciated oscillator strengths. This is illustrated in a particu-
larly simple manner by the anisotropic dielectric function

Fig. 2. Comparison for C70 of electron energy loss measure-
ments (dotted lines) [17] with predictions from the dielectric
model, with a scaling of parameters from C60 as discussed in
the text.

of graphite, see Appendix C. The valence electrons are dis-
tributed fairly uniformly in the directions perpendicular to
the c-axis but parallel to this axis they are strongly con-
fined to the planes of hexagonally bonded carbon atoms
(graphene layers). For solid C60, the low value of the os-
cillator strength of the π resonance, pointed out in refer-
ence [17], can be explained by the confinement of electrons
in molecules. For the model illustrated in Figure 1, the in-
tegrated oscillator strength of ωImε below 8 eV is 18 but
this number is reduced by more than a factor of two when
the outer shell containing 3 electrons is removed, and there
is then no local maximum around 6 eV.

The experimental polarisabilities of C60, C70, and C76

molecules, derived from the energy loss measurements and
the Clausius-Mossotti relation, are shown in Figures 4–6
together with the predictions from the dielectric model.
The corresponding absorption cross-section for isolated
molecules is determined by Imα alone, according to equa-
tion (3). However, the real part is important for the local
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Fig. 3. Comparison for C76 of electron energy loss measure-
ments (dotted lines) [20] with predictions from the dielectric
model, with a scaling of parameters from C60 as discussed in
the text.

field enhancement at fullerene molecules embedded in a
medium, as discussed in reference [32]. As seen in the fig-
ures, Reα is dominated by large wiggles at the positions
of the plasma resonances, and these wiggles lead to dis-
tortions of the observed absorption spectra. We note that
although the deduced polarisability of molecules in solid
films should be qualitatively similar to that of isolated
molecules, a significant distortion and broadening may be
expected due to interaction of the molecules (band struc-
ture effects). A broader comparison with measurements
for fullerenes in the gas phase, in liquid solution, and in
solid films, requires careful consideration of local field cor-
rections and is published separately [32].

3 Radiation from electronic transitions

As mentioned in the introduction, our motivation for this
study has been the desire to understand the radiative cool-

Fig. 4. The molecular polarisability of C60, derived with the
Clausius-Mossotti relation in equation (12) from the data and
from the model (solid lines) illustrated in Figure 1.

Fig. 5. The molecular polarisability of C70, derived with the
Clausius-Mossotti relation in equation (12) from the data and
from the model (solid lines) illustrated in Figure 2.

ing of hot fullerene molecules. The connection via detailed
balance between the rate of spontaneous emission of ra-
diation and the rate of absorption is usually expressed
through the Einstein A and B coefficients for transitions
between single levels. However, we wish to relate the
spontaneous emission to the net absorption cross-section
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Fig. 6. The molecular polarisability of C76, derived with the
Clausius-Mossotti relation in equation (12) from the data and
from the model (solid lines) illustrated in Figure 3.

at temperature T , which we denote by σT (ω). This quan-
tity includes the reduction due to induced emission and
therefore relates directly to an absorption experiment. In
addition, σT is the natural quantity to consider if we want
to estimate the emission of radiation at high temperatures
from absorption cross-sections measured or calculated for
a molecule in or near the ground state, since the oscillator
strength distribution obtained from equation (20), with
σ replaced by σT , fulfils the sum rule in equation (21).
This is so because this rule also applies for an excited ini-
tial state, provided that induced emission is included as a
negative contribution. For the simplest case, a harmonic
oscillator, only a single step up or down the energy ladder
is allowed and the net cross-section σT , which is the dif-
ference between the corresponding two cross-sections, is
independent of temperature.

3.1 Detailed balance for canonical and microcanonical
systems

In thermal equilibrium, spontaneous emission is balanced
by net absorption. For thermal radiation propagating
within a solid angle δΩ, the energy flux per unit frequency
interval is given by Planck’s expression for the energy den-
sity multiplied by cδΩ/4π. Integrating over solid angle, we
therefore obtain for the net power per unit frequency in-
terval absorbed by a molecule,

I(T, ω) =
~ω3

π2c2
(e~ω/kT − 1)−1σT (ω). (27)

Integration over frequencies then leads to the total ab-
sorbed and radiated power,

I(T ) =
~

π2c2

∫
dω ω3(e~ω/kT − 1)−1σT (ω). (28)

We may relate this result to the Stefan-Boltzmann law by
expressing it as the product of the black-body emission
from a macroscopic sphere with radius r1 and an absorp-
tivity a(T ),

I(T ) = 4πr2
1σ0T

4a(T ). (29)

Here, σ0 is the Stefan-Boltzmann constant,

σ0 =
π2k4

60c2~3
= 3.54× 10−9 eV/s Å−2 K−4, (30)

and a(T ) becomes the weighted average of a frequency
dependent absorptivity defined by a(T, ω) = σT (ω)/πr2

1,

a(T ) =
∫

dω ω3(e~ω/kT − 1)−1a(T, ω)∫
dω ω3(e~ω/kT − 1)−1

· (31)

It is natural in conjunction with the application of macro-
scopic dielectric models to express the thermal radiation
in this form but it should be kept in mind that for a sys-
tem with extension much smaller than typical radiation
wavelengths, the absorption need not be weaker than for
a black body with the same extension, i.e., a(T ) may ex-
ceed unity.

For simplicity, we have here at first applied a canonical
distribution. However, for an isolated molecule the excita-
tion energy is the appropriate variable and we should con-
sider the radiation intensity for a microcanonical rather
than a canonical ensemble. To this end we rewrite equa-
tion (27) in the form

I(T, ω) =
~ω3

π2c2
σabs,T (ω)e−~ω/kT , (32)

where σabs,T is the absorption cross-section without cor-
rection for induced emission. The first factor on the right
hand side is c times the ratio of the Einstein A and B
coefficients for spontaneous and induced emission. This
factor is independent of the type of the statistical en-
semble. The second factor refers not directly to induced
emission but to absorption proportional to σabs,T , and the
formula therefore contains as an additional factor the ra-
tio between the rates of induced emission and absorption
associated with transitions between two quantum states.
We consider now transitions between macrostates repre-
sented by microcanonical ensembles at excitation ener-
gies E − ~ω and E. Since the probabilities for absorp-
tion and for induced emission are equal for transitions
between microstates (“microscopic reversibility”), the ra-
tio between the rates of induced emission and absorp-
tion is given by the ratio between the statistical weights
of the microstates in the two ensembles, i.e., by the in-
verse ratio of the densities of states at the two energies,
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ρ(E − ~ω)/ρ(E). Hence the formula analogous to equa-
tion (32) for the radiation intensity at fixed excitation en-
ergy, I(E,ω), is obtained by replacement of the last two
factors by σabs(E − ~ω)ρ(E − ~ω)/ρ(E) [44].

In the limit of a very large system, the difference be-
tween a canonical and a microcanonical ensemble van-
ishes. Also for a finite system it is useful to introduce a
(microcanonical) temperature,

1
kT

=
d

dE
lnρ(E). (33)

It may be shown that the energy E in this equation devi-
ates by only about −kT from the average excitation en-
ergy in a canonical distribution at the same temperature.
For moderate excitation energies, the density of states of a
fullerene molecule is dominated by the contribution from
vibrations, and the average energy at temperature T can
be calculated very simply in the harmonic approximation
if the vibrational frequencies are known. For C60 one ob-
tains in the region 1000 K < T < 2000 K

E ' 7.4 + 0.0138(T − 1000) eV, (34)

corresponding to a heat capacity of C ' 160k [1]. We
can then with good accuracy use this relation to calcu-
late the microcanonical temperature from a given excita-
tion energy. With the definition in equation (33), the ra-
tio ρ(E − ~ω)/ρ(E) takes the form of a Boltzmann factor
exp(−~ω/kT ) for small values of ~ω/CT . If this quantity
is not very small, a more accurate approximation should
be applied, and to second order in the small quantity we
obtain

ln(ρ(E − ~ω)/ρ(E)) ' −~ω d
dE

lnρ(E − ~ω/2)

= −~ω/k(T − ~ω/2C). (35)

This finite-heat-bath correction has been discussed exten-
sively by Klots [45]. The replacement of T by T−~ω/2C in
equation (28) reduces the intensity by about 10%, depend-
ing on the shape of the function σT (ω). For σT (ω) ∝ ωm

we obtain the scaling I ∝ T 4+m, also when this correction
is included.

3.2 Comparison of model with experiments

To investigate the influence of radiative cooling on the
decay of hot fullerenes we shall first introduce a simple
description of the decay rates. For neutral or positively
charged fullerenes, the dominant decay mode is emission
of C2 molecules although the competing electron emission
has also been observed. The energy barrier, approximately
equal to the binding of two carbon atoms in a fullerene
minus the binding in C2, is of order Eb = 8 eV (slightly
higher in cations than in neutral molecules) [46]. We shall
also consider the decay of fullerene anions. Since the elec-
tron affinity of fullerenes is of order Eb = 3 eV, only [47],
the dominant decay channel is in this case electron emis-
sion. In analogy to the discussion above for photon emis-
sion, a microcanonical temperature may be introduced for

excited molecules, and the decay rates may be approxi-
mated by an Arrhenius expression,

−dN
dt

= ν exp
(
− Eb

k(T −Eb/2C)

)
N(t), (36)

where T is related to the excitation energy as in equa-
tion (34) and where we have included the finite-heat-bath
correction in equation (35).

For electron emission from anions, the preexponen-
tial factor ν may be estimated from detailed balance be-
tween emission and electron attachment, which has been
studied experimentally. In analogy to the derivation of
the Richardson-Dushman formula for thermionic emission
from a hot metal surface, one finds

ν = σa
k2m

π2~3
(T −Eb/C)2 gf

gi
, (37)

where σa is the attachment cross-section. The last factor
is the ratio of degeneracies in the final and initial states
of the emission process (gf = 2 from spin), and the re-
maining factors describe the flux, integrated over 4π solid
angle, of free particles obeying Boltzmann statistics. The
temperature T is here corrected to the temperature of the
molecule in the final state, which determines the distri-
bution of the kinetic energy of the emitted electron. Mea-
surements of electron attachment to neutral C60 molecules
show that the cross-section, averaged over the relevant en-
ergy region, roughly equals the geometrical cross-section,
σa = πr2

1 with r1 = 4.1 Å [48–50]. Introducing this cross-
section and setting the ratio of degeneracies equal to unity,
we obtain ν ' 1.3 × 1013 s−1 for T = 1500 K. A similar
estimate may be applied for C2 emission although with
larger uncertainty, owing mainly to the lack of measure-
ments on attachment. The electron mass m is replaced by
the much larger mass M2 of the C2 molecule and the fac-
tor gf/gi becomes the number of available rotational and
vibrational states of the ejected C2 molecule multiplied
by the ratio of the vibrational level densities for C58 and
C60 [51]. We estimate this factor to be of order 102 and,
inserting again the geometrical cross-section, we obtain
ν ∼ 2× 1020 at T = 3000 K. In Figure 7 we have plotted
the decay functions given by equation (36) against tem-
perature, and for C2 emission we have applied the value
ν = 2.1×1019 used in a recent analysis of experiments [46].

Owing to radiative cooling, the temperature of a
molecule decreases with time. The influence of the cooling
on the decay rates may be obtained from differentiation of
equation (36) with respect to time. One finds that the ra-
tio R between the changes of the decay rate due to cooling
and due to depletion is given by

R =
I(T )

C

G
(T −Eb/2C)

(
−dN

dt

) , (38)

where I(T ) is the radiation intensity and where we have
denoted the magnitude of the exponent in equation (36)
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Fig. 7. Decay rates for C2 emission from C60 (dashed) and
electron emission from C−60 (dotted), calculated from equa-
tion (36) with the parameters given in the text, compared with
the radiation intensity obtained from the dielectric model (full
line, scale [eV/s]).

by G. The factor multiplying the decay rate in the denom-
inator is of order 1 eV both for C2 emission near 3000 K
and for electron emission from anions near 1500 K. The
importance of cooling can therefore be judged from a com-
parison of the decay rates with the radiation intensity in
units of eV/s.

The dielectric model gives a prediction for the absorp-
tivity in the radiation formula in equation (29). Within
the simple spherical model with the dielectric function in
equation (15), we obtain from equations (16, 17) in the
limit of low frequencies,

a(ω) ' 12γ
r1
c

ω2

ω2
0

· (39)

To obtain an estimate of the intensity I, we insert val-
ues of the variables which approximately reproduce the
σ resonance for C60, r1 = 4.1 Å and ~ω0 = 34 eV, cor-
responding to all 240 electrons, and ~γ = 15 eV. The
mean value of ω2 with the distribution in equation (31)
is 〈(~ω)2〉 ' 20(kT )2 and from equations (29, 30, 39) we
then obtain I ' 0.03 eV/µs for T = 3000 K. In Figure 7
we have included the radiation intensity for C60 obtained
from the model discussed in Section 2. It is nearly pro-
portional to T 6 and the value at 3000 K is close to the
simple estimate based on equation (39). We see from the
figure that the associated cooling may lead to significant
corrections to rates of fragmentation [46]. As discussed in
reference [52], it appears that an error in an estimate of in-
frared radiation from silver clusters [53] is responsible for
the opposite conclusion in early papers [54]. According to
Figure 7, the fragmentation by C2 emission is quenched
by radiative cooling for temperatures below about 3000 K,
corresponding to lifetimes longer than a few tens of mi-
croseconds, and electron emission from anions is quenched
for temperatures below about 1600 K, corresponding to
lifetimes longer than a couple of milliseconds.

There are a few experiments which give direct informa-
tion about the radiation intensity. Hansen and Campbell
observed fragmentation of fullerene cations on a time scale

of 10–100 µs, and from a statistical analysis they con-
cluded that radiative cooling was important [55]. The val-
ues of a quantity ∆N which is proportional to the ra-
diation intensity at the fragmentation temperature were
found from the experiment to be very similar for a series
of molecules C+

N , with even N from 36 to 58, and with
the values of Eb and G used above, the magnitude of ∆N

corresponds to an emission rate of order 3 × 104 eV/s1.
As seen from Figure 7, this is close to the prediction from
the dielectric model. However, there is considerable uncer-
tainty in the analysis of fragmentation experiments, as-
sociated mainly with uncertainties in the parameters in
equation (36) (see also Refs. [46,56]).

We have measured the cooling rate of fullerene anions
C−N in a storage ring by observation of thermionic electron
emission [1, 2]. The interpretation of such measurements
can be more quantitative because the parameters of the
decay are better known. The experiments determine an ef-
fective cooling time corresponding to the reciprocal decay
rate at the temperature where the ratio R in equation (38)
is equal to unity [1], and for most of the fullerenes studied
the values were of order 1 ms [2]. In a recent experiment
the decay was measured for shorter times for anions stored
in a small electrostatic ring [57]. This allowed a more ac-
curate analysis and the effective cooling time was found
to be ∼2 ms, within a factor of two, for all the fullerene
anions with even N from 36 to 96, in good agreement with
the position of the crossing point in Figure 7.

There is an important feature of the absorptivity of
the fullerenes which is not accounted for by the dielec-
tric model. As seen in Figures 4–6, there is near zero an
energy gap without absorption, and this should be very
important for the intensity of thermal radiation which is
dominated by low-energy photons. It might therefore seem
better to base the calculation of heat radiation in equa-
tion (28) with measured absorption cross-sections when
such data are available. A calculation of this type has been
carried out recently for C60 by Chupka and Klots [21], who
applied the oscillator strengths measured for C60 films [14]
and for C60 in hexane solution [10] as alternatives, and
we have performed similar calculations. The integrated
oscillator strength distributions derived from absorption
cross-sections are shown in Figure 82. The local field cor-
rection for C60 in solution leads to a reduction of the os-
cillator strength by a factor of the order of two, and we
have included this reduction as explained in reference [32],
which also contains a discussion of the normalization of
the gas phase data. The radiation intensities in Figure 9
which correspond to absorption in solution and in films
are much lower than the prediction from the dielectric
model and the two curves differ by orders of magnitude at
the lower temperatures. The absorption band just below

1 We have corrected an error in the analysis in reference [55].
The second term in equation (A4) should be omitted and this
implies that the values of the parameter ∆N in Table I should
be multiplied by 3.

2 Since the absorption resonances in C60 are very broad, it
is not a good approximation to represent them by δ-functions,
as done in reference [21].
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Fig. 8. Integrated dipole oscillator strength for C60, derived
from the cross-sections for solid films (dotted) [17], hexane so-
lution (dashed) [10], gas-phase (dot-dashed) [5], and our model
(solid). The local field corrections for C60 in solution and the
normalization of the gas-phase data are discussed in refer-
ence [32].

3 eV is very weak for C60 in solution but the selection
rules forbidding this band are apparently broken in the
solid [58]. Measurements in solution have been made for a
few other fullerenes. The absorption by C70, C76, and C78

shows strong lines at 4–6 eV and an effective gap of about
2 eV [9, 12, 59, 60]. For C70 and C76 a comparison with
the measurements on solid films, illustrated in Figures 2,
3 and 5, 6, reveals less structure and a somewhat smaller
gap (about 1.5 and 1.3 eV) in the solid phase, just as for
C60.

Since the molecules interact more weakly with their
surroundings in solution than in the solid, the absorp-
tion in solution should be a better approximation to that
of a free molecule. However, the comparison of oscillator
strengths in Figure 8 shows that at low frequencies the ab-
sorption in a hot gas is stronger than in solution at room
temperature. This difference is expected to increase for
isolated molecules at higher temperatures as illustrated by
the calculations in reference [61]. The interaction between
electronic and vibronic excitations becomes stronger, and,
especially for fullerenes with low symmetry, the effective
gap may be reduced due to fluctuations in configuration
and shape. Recently, we have obtained direct informa-
tion on the cross-section σT (ω) at high temperatures from
measurements of the absorption of laser light (0.6–3 eV)
by fullerene anions in a storage ring [62]. For C−60 and
C−70, these measurements showed strong absorption down
to photon energies of ∼2 eV and ∼1.3 eV, respectively,
and below this cut-off the absorption was dominated by
a strongly broadened line associated with a well known
transition of the additional electron in the anions [63,64].
For C−50 the absorption extended down to ∼1 eV while the
gap measured for C−58 and C−76 was even smaller, ∼0.8 eV.
No line from a single-electron excitation was observed in
these cases.

As seen in Figure 9, an energy gap of less than 1 eV
has little influence on the radiative cooling at temper-
atures characteristic for fragmentation, T ∼ 3000 K,

Fig. 9. Intensity of radiation from C60 as a function of tem-
perature. Three of the curves correspond to the distributions
of oscillator strength given in Figure 8, for solid films (dot-
ted), solution (dashed), and model (solid). The dash-dot-dot
lines show the reduction of the prediction from the model when
energy gaps of 1, 2, or 3 eV are included.

but a gap of 2 eV gives a large reduction. For electron
emission from anions near 1500 K, the influence of a gap
is much stronger but the additional electron will also con-
tribute to the radiation. Estimates indicate that for C−60
a major part of the cooling can be accounted for by the
lowest transition for this electron, at 1.16 eV [1,65]. Thus
there are strong indications that the radiation intensity
for neutral C60 molecules is much lower than the model
prediction, perhaps similar to the curve corresponding to
a gap of 2 eV in Figure 9. There has been one report
of a much higher cooling rate at ∼1800 K but we are
not convinced that the interpretation of the experiment
is correct3. Also for C−70 the cooling rate derived from ob-
servation of electron emission is probably dominated by
the single additional electron [65], which has an allowed
transition at 0.9 eV [66]. For the other fullerene anions the
influence of the additional electron is uncertain, but the
gap is smaller and it is also compensated for by the contri-
bution from low-energy vibronic transitions, as discussed
in the following section. For fullerene cations, the pres-
ence of a hole in the highest electronic level should lead
to additional transitions at low frequencies and a smaller
effective energy gap than for the neutral molecules.

3 Reference [52] reports time-of-flight measurements for C60

molecules emitted from an oven. A suppression of the yield at
long flight times is interpreted as evidence for C2 emission in
flight and a deviation of the flight-time distribution from an
exponential decay is claimed to reveal significant radiative cool-
ing. However, in the final analysis, the authors apply a thermal
distribution without inclusion of preferential fragmentation of
the most highly excited molecules. This cooling by depletion,
which is analogous to evaporative cooling of a liquid, leads to a
strong modification of the exponential decay law for fullerenes
from a thermal source. Moreover, the deduced barrier (∼4 eV)
seems much too low for fragmentation in flight, for which both
calculations and other experiments give a barrier two to three
times as high [46].
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Thus the uncertainty of heat-radiation estimates based
on absorption data is large even for the best studied
fullerene molecule, C60. For the other fullerenes and for
fullerene ions, the data are scarcer and the uncertain-
ties even larger. There are fewer symmetry restrictions for
such molecules and calculations for C60 can provide only
a lower bound for their emission of radiation. It appears
therefore that the dielectric model, designed to reproduce
the gross features of the oscillator strength distribution for
all the fullerenes and fullerene ions, can play a useful role
in the estimation of radiative cooling of hot fullerenes.

The prediction in equation (39) of an absorptivity pro-
portional to ω2, which leads to a radiation intensity pro-
portional to T 6, has a simple physical interpretation. For
fixed amplitude of an external electric field the velocity
(or current) of the induced electronic charge oscillation is
proportional to ω. Since the damping included in equa-
tion (15) corresponds to a velocity proportional friction-
like force, the dissipation becomes proportional to ω2, in
analogy to the current dependence of the energy dissipa-
tion according to Ohm’s law. The factor ωr1/c in equa-
tion (16) is sometimes used as an estimate of the absorp-
tivity and this leads to a proportionality of σ to the first
power of ω [21, 67]. However, α must become real in the
adiabatic limit ω → 0 and, according to equation (3),
σ must therefore be proportional to a higher power of
ω. The frequency dependence of the absorptivity (emis-
sivity) is important, for example, for the interpretation
of measurements of the spectrum of radiation from hot
molecules [67].

4 Radiation from vibrations

The radiative cooling also has a significant contribution
from infrared-active vibrations. In C60 there are four such
modes, with Tu (or Fu) symmetry and each triply degen-
erate, and in reference [1] the vibrational radiation from
C60 was estimated from the values of the dipole deriva-
tives calculated by Stanton and Newton [68]. To assess
the accuracy of this estimate, we shall compare with an-
other calculation and with experiments, and then discuss
the radiation from vibrations in the other fullerenes and
in fullerene anions.

4.1 Absorption cross-section and effective charge

Let us first briefly recall the basic formula for absorption
of radiation by a molecular vibration. The cross-section for
a dipole transition is determined by the matrix element of
the dipole operator D between the initial state |a〉 and the
final state |b〉, and averaged over directions of polarisation
and integrated over the narrow frequency interval around
the central frequency ω of the line, it is given by∫

dω′σba(ω′) =
4π2

3
ω

~c
|〈b|D|a〉|2. (40)

In the Born-Oppenheimer approximation, the states be-
come products of a nuclear part and an electronic part,

which we shall take to be the ground state. We may then
apply the formula in equation (40) with vibrational states
|a〉 and |b〉 and a dipole operator D in the form of an ex-
pectation value in the electronic state Ψ0, which depends
parametrically on the coordinates Ri of the nuclei with
charge Ze and mass M ,

D(Ri) = 〈Ψ0(Ri, rj)|Ze
∑
k

Rk − e
∑
l

rl|Ψ0(Ri, rj)〉.

(41)

The matrix element is an integral over the electronic co-
ordinates rj , only. This dipole operator may be approxi-
mated by a first-order expansion around the equilibrium
positions of the nuclei and expressed in normal coordi-
nates Xi (defined without mass factors, as in Ref. [68]).
In the harmonic approximation, the vibrational states in
equation (40) may be represented by products of one-
dimensional oscillator wave functions, and the dipole ma-
trix element vanishes except for states differing by a sin-
gle excitation in one coordinate. For excitation from the
ground state of the ith oscillator with frequency ωi, the
dipole matrix element is given by 〈1|Xi|0〉 = (~/2Mωi)1/2,
and summing over the three final states for a triply degen-
erate mode we obtain∫

dω′σ10(ω′) =
2π2Q2

Mc
, with Q2 ≡ 1

3

3∑
i=1

∣∣∣∣ ∂D
∂Xi

∣∣∣∣2 . (42)

This is the integrated cross-section for excitation of a three
dimensional harmonic oscillator with mass M and charge
Q, and the dipole derivativeQ may therefore also be called
the effective charge of the vibrational mode. From an os-
cillator state |n〉 induced dipole transitions can occur to
states |n+1〉 and |n−1〉, only, and the cross-sections, inte-
grated over the narrow lines, are proportional to n+1 and
n. Thus equation (42) gives the integrated cross-section
for absorption minus induced emission, independent of the
state of the oscillators, and hence also the thermally av-
eraged net absorption at all temperatures.

4.2 Comparison with measurements for C60

Calculations and measurements for the IR-active vibra-
tions in C60 were compared by Bertsch et al. [69] who
concluded that the older MNDO calculations by Stanton
and Newton were in marked disagreement with their own
LDA calculations, which were in better accord with exper-
iments. In reference [69], the transition strengths are given
as oscillator strengths, with the same normalization as in
equation (20). According to equations (20, 42) the oscil-
lator strength for a three dimensional harmonic oscillator
with charge Q and mass M equals (m/M)(Q/e)2, and the
oscillator strengths defined in this way are therefore very
small for molecular vibrations, f ∼ 10−4. We shall in-
stead use the values of the effective charge to characterize
the vibrational transition strengths. It has a simple inter-
pretation and is expected to be of order the elementary
charge.
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Table 1. Effective charges for IR-active vibrations in C60, in
units of the elementary charge e.

Line position (cm−1) 526 576 1183 1429

MNDO calc. [68] 0.31 0.18 0.42 0.65

LDA calc. [69] 0.61 0.49 0.47 0.39

Chase et al. [70] 0.5 0.29 0.26 0.29

Martin et al. [71] 0.49 0.34 0.33 0.3

Winkler et al. [72] 0.38 0.22 0.24 0.28

Mitzner et al. [67,73] 0.42 0.24 0.26 0.32

The first two rows in Table 1 present the effective
charges obtained by Stanton and Newton and by Bertsch
et al. In contrast to Table II of reference [69], the results
are seen to be in fair agreement. Apparently Bertsch et al.
overlooked that the dipole derivatives given by Stanton
and Newton were in units of Debye/Å= e/4.8. This intro-
duces an error of a factor of 4.82 ' 23 in the oscillator
strengths!

The cross-section σ10 and hence the effective charge
can be obtained from a measurement of the absorption
coefficient in solid films. We have calculated the effec-
tive charges ascribed to reference [70] in Table 1 from the
measured line widths and maximum values of the cross-
section, with the assumption of a Lorentzian line profile in
equation (42). As in reference [69], the local field enhance-
ment has been taken into account through a correction
factor on the effective cross-section, σT,m, derived from
attenuation of infrared radiation in a fullerite film,∫

dω′σ10(ω′) ' 9n
(n2 + 2)2

∫
dω′σT,m(ω′), (43)

with the index of refraction n = 2. Apart from the fac-
tor n, which derives from the Poynting vector as in equa-
tions (6, 8), this correction factor is just the inverse square
of the local field enhancement given in equation (13). As
discussed in reference [32], equation (43) should be a good
approximation for narrow and not too strong absorption
lines.

The following reference in the table, [71], was also given
by Bertsch et al. in a note added in proof, with the com-
ment that the f values were larger by a factor of four
than those obtained from reference [70]. In contrast, we
find that the numbers are in excellent agreement. The re-
sults of the measurement were given as strengths Sj of
resonances in a dielectric function, and probably Bertsch
et al. overlooked that the reduction factor 9/(n2 + 2)2

in equation (43) has to be applied in the transformation
from the observed strengths Sj to the molecular oscillator
strengths fj [32]. A similar representation was used for the
results presented in reference [72], and the corresponding
effective charges are also included in Table 1. The last set
of numbers in the table have been determined from the
Einstein A coefficients calculated in reference [67] from
measured absorption coefficients and used there for an es-
timate of the thermal radiation from vibrations. We have

divided these coefficients by 2π to correct for an error in
the evaluation [73].

We may conclude from Table 1 that the experiments
agree within the typical uncertainty of about ±15%. The
difference between the calculations is larger but the re-
sults obtained with the LDA are only in slightly better
agreement with experiments than those from the simpler
MNDO approximation.

4.3 Radiation intensity

As argued above, the expression in equation (42) also
represents the thermally averaged net absorption cross-
section σT , integrated over the narrow line. We may there-
fore immediately apply equation (28) to obtain the radi-
ation at temperature T , and we find for the total power
from the four transitions,

I(T ) =
4∑
j=1

2~ω3
jQ

2
j

Mc3
(exp(~ωj/kT )− 1)−1

. (44)

We have here ignored the finite-heat-bath correction in
equation (35), which is very small for emission of a soft
photon4. The intensity in equation (44), calculated with
the values of Qj from Stanton and Newton, was shown
in reference [1] to be far too low to explain the observed
cooling at temperatures T=1200–1500 K. With the ex-
perimental values for the effective charges, the predicted
intensity is even lower by a factor ∼3, amounting to only
I(1500 K) . 1 eV/s. There are additional overtones and
combinations, of which many have been identified in high
resolution measurements [75], but they are weak and their
total contribution to the radiation should be small. This is
confirmed by the infrared emission measurements by Frum
et al. [76], which indicate that the four allowed transitions
dominate the infrared spectrum up to the highest temper-
ature in that experiment, T ∼ 1200 K.

For less symmetric fullerenes we may expect many
more infrared-active modes and a considerably higher ra-
diation intensity. An indication of the magnitude can be
obtained from measurements of oscillator strengths for IR-
active modes in C70. According to theory, there should be
31 such modes of which 13 have been identified. From
the measured strengths Sj in reference [77], we have de-
rived effective charges as discussed above for C60, and
the resulting radiation intensity from the 13 modes is
I(1500 K) ' 4 eV/s. Judging from this result, an estimate
of 10 eV/s at 1500 K appears reasonable for fullerenes

4 The finite-heat-bath correction can be important for
molecules with few modes of vibration. For the occupation
of vibrational levels Dunbar derived an analytical expression,
which contains this correction [74] (Eq. (4)). We have found
that the figures illustrating the accuracy of the expression con-
tain numerical errors and are misleading. However, if the mi-
crocanonical temperature defined in equation (33) is used in
Dunbar’s formula, the predicted level occupations are in excel-
lent agreement with the exact microcanonical distribution for
the model system illustrated in Figure 3 of reference [74].
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of even lower symmetry, and this is still at least an order of
magnitude smaller than the contribution from electronic
transitions.

For the C−60 anion, coupling of vibrations to the addi-
tional electron leads to a marked increase in the infrared
oscillator strength. Calculations by Wang et al. predict
that the vibrations of Hg symmetry, which are supposed
to be most important for the Jahn-Teller splitting of the
triply degenerate t1u ground state of the electron, con-
tribute to the infrared spectrum, and the total oscillator
strength of the vibrations increases by a factor of ∼4 ac-
cording to their figures [78]. Another mechanism has been
suggested by Rice and Choi, namely that the IR-active
modes can “steal” oscillator strength from the allowed
t1g → t1u electronic transition [79]. This prediction ap-
pears to have been confirmed experimentally by Martin
et al., who have measured absorption in C60 films as a
function of the doping with alkali atoms [71]. Such effects
may also be present for the other fullerene anions and
are expected to be more important at high temperatures
where phonon occupation numbers become large, but it is
difficult to give quantitative estimates.

5 Concluding remarks

We have developed a dielectric model of the absorption of
radiation by fullerenes, which in contrast to earlier mod-
els contains all the oscillator strength and gives a quan-
titative prediction of the whole absorption spectrum. It
is dominated by two plasma resonances, the σ resonance
near 20 eV containing most of the oscillator strength and
the weaker π resonance at ∼6 eV. By confining most of
the electrons to a sphere rather than a spherical shell,
we avoid a splitting of the σ resonance which is not seen
in experiments. As a new feature, a thin outer layer has
been introduced, containing a spill-out of the π electrons.
It simulates the tail of π-electron wave functions, and the
partial separation in space is necessary to avoid excessive
screening of the π resonance by the polarisation associated
with the σ resonance.

We have analysed the connection to the dielectric prop-
erties of graphite, which has been utilized by Lucas et al. in
their modelling of fullerenes. Many features can be under-
stood from this connection; in particular, they have shown
that the non-splitting of the σ resonance in fullerenes is
a consequence of the anisotropy of the dielectric function.
We have argued (in Appendix C) that an application of
the measured dielectric functions for graphite to single-
shell fullerenes requires a description of graphite by a layer
model, with most of the electrons confined to graphene
layers of thickness much smaller than the layer spacing.
Furthermore, the data for graphite seem to be unreliable,
and more experimental and theoretical work on this ma-
terial is needed.

With a simple scaling of parameters, our model de-
scribes the polarisability of fullerenes with different num-
bers of carbon atoms, and we find reasonable agreement
with data for C60, C70, and C76, obtained from inelastic
scattering of electrons in fullerene films. For the highly

symmetric C60 molecule, the strong shell structure is re-
flected in a pronounced fine structure of the spectrum, in
particular a splitting of the π resonance into a few strong
peaks, but such fine structure is hardly visible for the
molecule with lowest symmetry, C76, and there is good
agreement with the resonance shapes given by the model.

We argue that the model may be a useful guide for
prediction of the electromagnetic response of fullerene
molecules and their emission of radiation at high tem-
peratures, where a detailed account of the contribu-
tions from individual transitions becomes unrealistic. It
is worth noting that the oscillator strength fulfilling the
Thomas-Reiche-Kuhn sum rule also at elevated temper-
atures is proportional to the net absorption cross-section
σT , which contains the reduction from stimulated emis-
sion. Although the function σT (ω) may depend on tem-
perature, this indicates that it is reasonable to assume the
spontaneous emission from a hot molecule or cluster to be
proportional to the Planck factor (exp(~ω/kT )−1)−1 and
not, as argued in a recent discussion [44], to the Boltzmann
factor exp(−~ω/kT ). This general result is illustrated by
the formula for spontaneous emission from a harmonic os-
cillator, applied to evaluate the thermal radiation from
infrared-active vibrations

The main uncertainty in the estimates of the radia-
tion intensity comes from the electronic energy gap which
blocks the emission of low energy photons. However, both
calculations and experiments indicate that the gap de-
creases for high temperatures, especially for the less sym-
metric fullerenes. Furthermore, there is a significant con-
tribution from infrared emission by vibrations, which will
compensate for the reduction due to the gap. Our esti-
mates of radiation intensities are in good accord with the
few experimental observations but there are fairly large
uncertainties in the interpretation of experiments.

This project was supported by the Danish National Research
Foundation through the research centre ACAP. We are grateful
for the expert assistance of B. Bech Nielsen in the analysis of
experiments on infrared absorption by vibrations. We wish to
thank A.A. Lucas, L. Henrard, W.A. Chupka, and A. Howie for
sending us very relevant preprints and reprints of their work,
and A. Howie also for interesting discussions and sage advice
during a stay in Aarhus.

Appendix A

In this appendix we derive a number of formulas needed
for the discussion of dielectric models of a fullerene
molecule. The response of a (non-magnetic) homogeneous
medium to an incident electromagnetic field may be char-
acterized by a complex dielectric function ε(ω), relating
the complex amplitude of the displacement vector to that
of the electric field, Dω(r) = ε(ω)Eω(r). Almost a cen-
tury ago, Mie and others gave a general discussion of the
absorption and scattering of radiation by a spherical ob-
ject described by a dielectric function ε(ω) and a detailed
account of the formalism may be found for instance in ref-
erence [36]. We are concerned with radiation of reduced



428 The European Physical Journal D

wavelength c/ω much longer than the diameter d of the
object and in this limit the expressions for the various
cross-sections simplify considerably. One may, however,
derive these expressions in a much simpler manner if the
condition d� c/ω is introduced from the outset.

We are interested in the response of the electrons in-
side the object and first note that the motion of non-
relativistic charges is governed by the electric field alone.
We then argue that to a good approximation, this field
may be expressed as minus the gradient of a scalar po-
tential, as in electrostatics: the variation of the incident
electric field over the extension of the body is negligible
for d � c/ω and this part of the field may therefore be
represented by a linear potential. For the induced field, we
may base the argument on the explicit expressions in the
Lorentz gauge for the retarded potentials in terms of the
sources. At distances from the body small compared to
c/ω, retardation effects do not significantly influence the
temporal and spatial variation of the potentials and in
the neighbourhood of the dielectric the ratio of the vector
potential to the scalar potential is of order ωd/c. The rel-
ative contribution from the vector potential to the electric
field then becomes of order (ωd/c)2, and the calculation of
the induced charge distribution is reduced to the standard
electrostatic problem of a dielectric in a constant external
field. The physical fields are expressed as the real part of
complex fields, and since the real fields satisfy the Maxwell
equations and the boundary conditions at all times, the
same holds for the complex fields. Gauss’ law takes the
form ∇ · Dω(r) = 0 and within a homogeneous region,
characterized by a dielectric function ε(ω), the potential
Φω(r) therefore satisfies the Laplace equation, which to-
gether with the boundary conditions for Eω and Dω forms
the basis for the analysis below. To simplify the notation,
we shall omit the explicit reference to the fixed angular
frequency ω.

We now derive formulas for the polarisability of con-
centric spherical dielectric shells, and we apply a method
described in reference [80] (Ch. 4). Within each shell and
outside the outermost shell, the potential may be ex-
panded in spherical harmonics Ylm(θ, φ) and since it sat-
isfies the Laplace equation, the expansion coefficients are
linear combinations of rl and r−(l+1),

Φ(r) =
∑
lm

(Almrl +Blmr
−(l+1))Ylm(θ, φ). (A.1)

Continuity of the normal component of D and the tan-
gential component of E at a boundary gives two linear
equations which couple the values of the coefficients A
and B inside and outside the boundary but do not mix
coefficients with different labels (l,m). Since there are
no sources inside the innermost region, all B coefficients
vanish there, and for each pair (l,m) there is then only
one free parameter. Hence all the remaining coefficients
are proportional to the corresponding A coefficients out-
side the outermost shell. Each coefficient Alm in this re-
gion represents a driving field from external sources, and
this field induces a response represented by the coefficient
Blm in the same region. We shall concentrate on dipoles,

corresponding to l = 1, and in this case, the driving field
is a constant. In the calculation of the induced dipole mo-
ment we may then neglect all components of the potential
with l 6= 1 and choose the asymptotic form

Φ(r) = −Er cos θ, r →∞, (A.2)

corresponding to a constant external field E in the z-
direction.

Consider first a sphere with radius r1 and dielectric
function ε. If we introduce the internal field Ei and the
induced dipole moment p, the potential may be written
as

Φ(r) =

{
−Eir cos θ, r < r1

(−Er + pr−2) cos θ, r > r1
· (A.3)

The continuity equations for E and D at the boundary
become

−E + pr−3
1 = −Ei

−E − 2pr−3
1 = −εEi, (A.4)

and the dipole moment is then given by

p = r3
1

ε− 1
ε+ 2

E. (A.5)

The polarisability α is the ratio between p and the external
field E, and we obtain the expression in equation (14).
Inside the sphere, there is a constant field,

Ei =
3

ε+ 2
E, (A.6)

which induces a uniform polarisation P corresponding to a
surface charge density n·P, where n is the outward surface
normal. The polarisation is given by the expression

P =
ε− 1
4π

Ei, (A.7)

and introducing the restoring field Ei − E acting on the
electrons, we obtain from equations (A.6, A.7)

P = − 3
4π

(Ei −E). (A.8)

By decomposing the polarisation into a product of the
electronic charge density and a displacement, we find that
the restoring force on an electron, −e(Ei − E), may be
interpreted as an elastic force with angular frequency
ω0/
√

3, where ω0 denotes the plasma frequency, defined
below equation (15).

Next we treat a sphere covered by a spherical shell,
with inner and outer radii r1 and r2. The electrostatic
potential may be written as

Φ(r) =


−Eir cos θ, r < r1

(Ar +Br−2) cos θ, r1 < r < r2,

(−Er + pr−2) cos θ, r > r2

(A.9)
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and the continuity equations at the two boundaries be-
come

−E + pr−3
2 = A+Br−3

2

−E − 2pr−3
2 = ε2A− 2ε2Br

−3
2 , (A.10)

and

A+Br−3
1 = −Ei

ε2A− 2ε2Br
−3
1 = −ε1Ei, (A.11)

where ε1 and ε2 are the dielectric functions inside the
sphere and in the spherical shell, respectively. From these
equations it is straightforward to derive the formula for
α = p/E in equation (22). This procedure can be extended
to any number of concentric spherical shells.

Finally, we consider a shell model in which each of
the dielectric functions εi(ω) is replaced by two functions,
εi‖(ω) and εi⊥(ω), describing the polarisability parallel
to and perpendicular to the radial direction. In spherical
coordinates, the Maxwell equation ∇·Dω(r, θ, φ) = 0 may
then be expressed in terms of the potential Φω(r, θ, φ),
and omitting the shell index i and the frequency ω we
obtain [33](
ε‖
∂

∂r
r2 ∂

∂r
+ ε⊥

(
1

sin θ
∂

∂ θ
sinθ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

))
× Φ(r, θ, φ) = 0. (A.12)

The solution, which is a generalization of equation (A.1),
is of the form

Φ(r) =
∑
lm

(Almru+ +Blmr
u−)Ylm(θ, φ),

u± = −1
2
±
(
l (l + 1) ε⊥/ε‖ +

1
4

)1/2

. (A.13)

Requiring continuity of D‖ and E⊥ at boundaries, we may
determine the fields within an arbitrary arrangement of
concentric shells. For a sphere covered by a shell, the so-
lution was given in reference [33]. For one of the curves
in Figure 11 we have applied a two-shell model, with a
central cavity of radius r1 surrounded by shells with outer
radii r2 and r3. Setting l = 1, we obtain as before the
polarisability α of the system after a straightforward cal-
culation, and with indices 1 and 2 referring to the inner
and outer shell, respectively, the result may be expressed
in the form

α = r3
3

ε2‖u2+ − 1− ξ2β(ε2‖u2− − 1)
ε2‖u2+ + 2− ξ2β(ε2‖u2− + 2)

,

β =
ε1‖Γ − ε2‖u2+Γ

′

ε1‖Γ − ε2‖u2−Γ ′
,

Γ = u1+ − ξ1u1− + 2(1− ξ1)ε1⊥,

Γ ′ = 1− ξ1 − ε1‖(u1− − ξ1u1+),

ξ1 = (r1/r2)u1+−u1− , ξ2 = (r2/r3)u2+−u2− . (A.14)

Appendix B

In this appendix we discuss sum rules for dipole oscilla-
tor strengths. We consider first a spherical dielectric, for
which the distribution is given by equations (16, 20), and
apply the dielectric function in equation (15). To derive
the sum rule, we could multiply the expression in equa-
tion (17) by ω and integrate over ω from 0 to∞. However,
it is simpler to go back to equation (3) and to consider in-
stead the complex polarisability in equation (14), which
with the dielectric function in equation (15) becomes

α = −r
3
1

3
ω2

0

ω2 − ω2
0/3 + iωγ

· (B.1)

The integral of ωImα over positive frequencies may be
replaced by half the integral from −∞ to ∞. The poles of
the expression in equation (B.1) are located in the lower
half plane and hence the integral of ωα along the real axis
is equal to the integral along a half circle of infinite radius,
above this axis. The asymptotic value of the function is

ωα⇒ − r
3
1

3ω
ω2

0 for |ω| ⇒ ∞, (B.2)

and the integral becomes i(π/3)r3
1ω

2
0. Applying the defi-

nition of the plasma frequency ω0, we then arrive at the
sum rule in equation (21).

The derivation involves two ingredients: first, the poles
of α(ω) are located below the real axis, which follows from
causality, and second, the asymptotic form should be given
by equation (B.2). Since the asymptotic behaviour is in-
dependent of the binding forces acting on the electrons,
the sum rule follows for any distribution of binding fre-
quencies. For a sphere covered by a spherical shell, the
polarisability is given by equation (22) and the asymp-
totic expression analogous to equation (B.2) is

ωα⇒ − r
3
2

3ω
[ξω2

01 + (1− ξ)ω2
02] for |ω| ⇒ ∞, (B.3)

where the plasma frequencies ω01 and ω02 are related to
the electron densities in the two regions. The integral
along the real axis of ωα now becomes

i(π/3)[r3
1ω

2
01 + (r3

2 − r3
1)ω2

02]

and this leads to the sum rule in equation (21), with the
total number of electrons on the right hand side.

For the dielectric function ε of a homogeneous medium,
there is a sum rule both for the function Imε(ω), relevant
for absorption of radiation,

1
2π2

m

e2

∫ ∞
0

dω ωImε(ω) = Nne, (B.4)

and for the function Im(−1/ε), which determines the
strength of inelastic electron scattering,

1
2π2

m

e2

∫ ∞
0

dω ωIm(−1/ε(ω)) = Nne. (B.5)
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Here N denotes the density of molecules. As for the molec-
ular polarisability, the sum rules follow from causality and
the asymptotic behaviour of the integrands [80]. For a di-
lute material with ε ' 1 + 4πNα and 1/ε ' 1− 4πNα, the
three sum rules in equations (21, B.4, B.5) become iden-
tical. Also for denser materials they are closely connected
since the Clausius-Mossotti relation in equation (12) im-
plies that the asymptotic behaviour of both ε − 1 and
1− 1/ε is the same as for 4πNα.

For a medium with a dielectric function ε(ω) of the
type given in equation (26), the sum rule in equation (B.4)
can be used in the analysis of measurements to derive the
number of electrons associated with well separated reso-
nances. The different terms in equation (26) have poles at
different electron binding frequencies and fulfil separate
sum rules. This idea has been applied to optical measure-
ments of the dielectric function for graphite, ε⊥, corre-
sponding to an electric field vector perpendicular to the
c-axis, i.e., parallel to the carbon sheets. The integrals
over the π and σ resonances were shown to give the ex-
pected values, nπ ' 1 and nσ ' 3 [27]5. As noted by
Sohmen et al. [17], the integral over the π plasma res-
onance for solid C60 is smaller than would be expected
from the density of π electrons, and they speculated that
perhaps the two resonances are not sufficiently separated
for application of separate sum rules. However, as we shall
now discuss, there is a more fundamental reason for this
result.

Consider a model of molecules as spheres of radius
r1, containing a medium with the dielectric function ε(ω)
in equation (26), and assume that the dielectric func-
tion ε(ω) of the solid composed of these molecules may
be obtained from the Clausius-Mossotti relation in equa-
tion (12), where the molecular polarisability α(ω) is given
by equation (14). With η = r3

1/r
3
w we may then write

ε(ω) as

ε(ω) = 1− η
∑
j=1,2

ω2
0j

ω2 − ω2
bj + iωγj

×

1− 1− η
3

∑
j=1,2

ω2
0j

ω2 − ω2
bj + iωγj

−1

. (B.6)

For η = 1 this expression reduces to the dielectric func-
tion in equation (26) for a homogeneous material and the
imaginary part of this function has resonances at the bind-
ing frequencies and satisfies the separate sum rules for
the corresponding partial densities. In the limit η � 1,
on the other hand, the formula gives the dielectric func-
tion for a dilute gas of molecules and it reduces to the
expression ε ' 1 + 4πNα. As discussed in Appendix A,
a radiation field can then excite collective charge oscilla-
tions, and the resonances are shifted. To study the on-
set of collective behaviour, we may introduce the param-
eter δ = (1 − η)/3 and calculate changes in resonance

5 However, a smaller oscillator strength for the π resonance
in ε⊥(ω) was later found in both an optical experiment [39]
and an experiment on inelastic electron scattering [34].

frequencies and strengths to first order in this quantity
for fixed rw. We then obtain formulas identical to those
given in equations (C.3, C.4) in Appendix C. However,
although such a calculation illustrates the strong shifts in
resonance frequency and the large changes in resonance
strength due to electron confinement, it is unrealistic for
r1 ' rw because the spheres overlap. In Appendix C we
have for graphite performed an analogous calculation in
one dimension, and this gives a more realistic illustration
of the transition from a homogeneous to an inhomoge-
neous system.

Appendix C

In this appendix we discuss the connection between the
dielectric properties of fullerenes and of graphite. A close
similarity is expected since the bonding of carbon atoms
in fullerenes is similar to the hexagonal bonding in the
graphene layers of graphite, and this is confirmed by
experiments on electron energy loss [19]. Lucas et al.
have suggested two alternative ways of applying the mea-
sured dielectric properties of graphite in a description
of fullerenes [31]. One possibility is first to derive an
atomic polarisability for carbon in graphite from the
anisotropic dielectric function by means of a modified
Clausius-Mossotti relation [28], which can also be ex-
pressed as a formula for the local field,

Eloc = (1−Bu +Buεu)E, (C.1)

where the constant Bu depends on the direction of the
field as specified by the index u. For Bu = 1/3 one ob-
tains the Lorentz-Lorenz expression for the local field in
equation (13). By a numerical calculation for point dipoles
arranged in the lattice of graphite, they found the values
B‖ = −0.606 and B⊥ = 0.803 for a field parallel with
and perpendicular to the c-axis, and we have performed a
similar calculation and confirmed their results. From the
dielectric functions in reference [39], they derived a fre-
quency dependent anisotropic atomic polarisability and
applied it to calculate the polarisability of C60.

As an alternative to this “discrete-dipole method”, the
dielectric functions ε‖ and ε⊥ have been applied in a spher-
ical shell model [31, 33]. Although the two methods were
shown to be equivalent for fullerene onions, consisting of
several curved carbon layers, we find the latter method
questionable for a simple fullerene: the sum rule in equa-
tion (21) will give the total number of valence electrons
in a sphere with the average electron density of graphite,
and this is only about half the number of valence electrons
in the fullerene molecule because the thickness of the di-
electric shell representing the molecule is about half the
layer spacing in graphite. A more correct procedure to be
described now is to represent the dielectric functions for
graphite by a layer model and then apply the dielectric
functions of the layers to the fullerenes.

Graphite contains carbon sheets (graphene layers)
with a fairly large separation, dw = 3.35 Å. Assume
that the sheets can be described as slabs with thickness
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Table 2. Parameters for layer model of graphite. The numbers in parenthesis are modified widths used in the model of C60.

π-el/atom ⊥c ~ωj [eV] ~γj [eV] σ-el/atom ⊥c ~ωj [eV] ~γj [eV]

0.2 1 4 2.1 14 2(6)

0.5 4.2 1.5 0.6 19 5(12)

0.3 11.5 3 0.3 25 5(12)

π-el/atom ‖c σ-el/atom ‖c
0.05 4 2 2.1 14 20

0.45 9.5 3 0.9 25 20

0.5 14 3

d < dw of a material with the dielectric function ε in equa-
tion (26). The dielectric function ε of the medium is then
anisotropic. For fields perpendicular to the c-axis, the E
field is the same inside and outside the carbon sheets and
the dielectric function ε⊥ is identical to ε, except for a
renormalisation of the plasma frequencies ω01 and ω02 to
the total volume per electron. The function ωImε⊥ there-
fore fulfils separate sum rules for the π and σ resonances,
as discussed in Appendix B.

While for fields perpendicular to the c-axis, the dielec-
tric response is the same as for a homogeneous medium
with the same density, the layer structure introduces qual-
itative changes for fields parallel to the c-axis. The dis-
placement D is now the same everywhere and we obtain
the dielectric function ε‖ as the ratio between D and the
average E field,

1
ε‖

=
η

ε
+ (1− η), (C.2)

where η = d/dw. We apply a perturbation calculation to
study the shift of the poles and the change of their strength
for η < 1 and define the small parameter as δ = 1 − η.
The poles of the function ε‖(ω) defined by equation (C.2)
are shifted upwards relative to the poles of ε(ω) by terms
proportional to the square of the plasma frequencies,

ω2
j ' ω2

bj + ω2
0jδ, j = 1, 2. (C.3)

In the limit of weak damping, the contribution to the in-
tegral in equation (B.4) from the resonance at ω2

j may be
evaluated as an integral along a small half circle around
ω2
j in the upper half of the complex ω2 plane. Compared

to the value for δ = 0, the strength of the resonance at
ω2

1 is then found to be multiplied by a reduction factor K
given by

K = 1− 2ω2
02

ω2
b2 − ω2

b1

δ. (C.4)

When the plasma frequencies are large compared to the
binding frequencies, the factor multiplying δ is large com-
pared to unity.

We can explain this on-set of collective behaviour as in
the discussion of equation (A.8) for an isolated molecule.
If for simplicity a dielectric with only one binding fre-
quency ωb is considered, the total force on an electron

with displacement x from its equilibrium position may be
expressed as

F (x) = −eEi −mω2
bx = −eE − e(Ei −E)−mω2

bx,
(C.5)

where Ei is the electric field inside the slab and E is the
average field. The last two terms represent the restoring
force and determine the resonance frequency for the po-
larisation induced by E. In analogy to equation (A.8), the
first one of these terms may be expressed in terms of the
polarisation Pi of the slab, and the polarisation may be
decomposed into the product of charge density and dis-
placement x,

−e(Ei −E) = −(1− ε/ε‖)eEi

= −(1− η − (1− η)ε)
4π
ε− 1

ePi

= 4πδePi = −δmω2
0x. (C.6)

Insertion into equation (C.5) gives the effective oscillator
frequency found in equation (C.3), which is exact when
there is only a single binding frequency.

The numerical value of the constant B‖ in equa-
tion (C.1) for the direction parallel to the c-axis gives
strong support for a layer model of graphite, since equa-
tion (C.2) leads to a relation identical to equation (C.1)
for the local field acting on layers of thickness d, with B‖
equal to 1− η−1, and the value of B‖ then corresponds to
the very reasonable layer thickness d ' 2.1 Å. From equa-
tion (C.1) follows the restriction that, when real, the value
of ε‖(ω) cannot exceed ∼2.7. We note that the function
ε‖(ω) recommended in reference [81] on the basis of re-
sults from electron energy loss measurements violates this
restriction quite strongly at low ω. It also turns out to be
very difficult to fit the imaginary part of this function by a
layer model and we have therefore chosen instead to adapt
the model to the optical measurements in reference [39].

Our model of a graphite layer of total width dw =
3.35 Å consists of a central layer of width d = 1.7 Å and
two adjacent thinner layers of width dd = 0.35 Å. The
dielectric functions ε⊥(ω) and ε‖(ω) inside the layers con-
tain sums of terms of the type in equations (25, 26) with
the parameters given in Table 2. The plasma frequencies
are calculated from the number of electrons per atom, the
width of the layers, and the atomic density in graphite,
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Fig. 10. Comparison with data from reference [39] (dotted
lines) of the dielectric functions Imε⊥ and Imε‖ obtained from
a layer model of graphite with the parameters given in Ta-
ble 2. The dashed line in the lower figure gives the dielectric
function Imε‖ with the same parameters but for a homogeneous
medium.

N = 0.115 Å−3. The two thinner layers contain each 10%
of the π electrons and no σ electrons. The functions ε⊥
and 1/ε‖ have then been calculated as weighted averages
of the corresponding layer functions, and Figure 10 shows
a comparison between the imaginary part of the result-
ing dielectric functions and the functions derived from the
optical data of reference [39]. Except for an overall fac-
tor, the data are reproduced rather well. For the function
Imε⊥ there is also good qualitative agreement with the
single electron calculation in reference [82]. To facilitate
a comparison with such calculations for fields parallel to
the c-axis, and to illustrate the importance of the bunch-
ing of electrons in this case, we have in Figure 10 included
the dielectric function for a homogeneous distribution of
electrons, i.e., as it would appear if the layer functions
were averaged in the same manner as for the perpendicu-
lar direction. The shift of the oscillator strength to higher
frequencies due to bunching is obvious. In fact, this shift is
so strong that without the spill-out of π electrons into the
thin layers, the values of the function Imε‖(ω) would be
much lower than measurements in the region below 20 eV.
For the “homogeneous” dielectric function, there is a clear
qualitative similarity to the spectrum calculated in refer-
ence [82] but, in particular, the lines are much broader.
As for the fullerene model, this could be an effect of the
variation in the c-direction of the electron density inside
the layers [40].

Fig. 11. Comparison of the polarisability from the model illus-
trated in Figure 4 (full lines) with results based on the two-shell
model in equation (A.14) with the anisotropic dielectric func-
tion given in Table 2. The other parameters are given in the
text.

Parameters for a two-layer model for C60 may be de-
rived from this model of graphite and we have applied
equation (A.14) with the radii r1 = 2.4 Å, r2 = 4.35 Å,
and r3 = 4.7 Å. For simplicity, we have used only two
layers, with 10% of the π electrons allocated to a thin
outer layer, since an additional thin layer inside the cage
should have little effect on the polarisability owing to the
strong screening of external fields. The parameters for the
dielectric functions were chosen as in graphite except for
the increase of some of the widths, as shown in Table 2.
This modification was necessary to obtain the reasonable
agreement seen in Figure 11 with the model described in
Section 2.5, and it can perhaps be justified as an effect of
the confinement of the electrons also in the perpendicular
direction. The fine structure of the calculation presented
in Figure 11 does not reproduce the experimental data
shown in Figure 4 in detail but in view of the differences
between the data for the three fullerenes in Figures 4–
6, this was hardly to be expected. The detailed structure
reflects positions and degeneracies of quantum levels and
selection rules for transitions between them, and these fea-
tures depend strongly on the shape and symmetry of the
molecule.

A serious problem for the application of graphite
data to predict properties of fullerenes is the inconsis-
tency of the data. For the transverse dielectric function
ε⊥(ω), there is reasonable agreement between the values
derived from X-ray measurements [39] and from inelas-
tic electron scattering [83] but for ε‖(ω) there is strong
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disagreement. This may be due to problems with both
techniques: the procedure for background subtraction in
the analysis of the X-ray measurements has been criti-
cized [84], and the real and imaginary parts of the func-
tion ε‖(ω) derived from these measurements are not con-
sistent with the Kramers-Kronig relations [85]. For the
electron scattering measurements there may be significant
relativistic effects [86, 87], which have not been included
in the analysis [83], and, as mentioned above, we find the
function ε‖(ω) derived from electron scattering inconsis-
tent with a constraint imposed by the layered structure of
graphite.
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